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Abstract
The formal contributions of inner elastic constants to the macroscopic
second- and third-order elastic constants of four diamond and graphite
allotropes of carbon are analysed. Second- and third-order compliances
and compressibilities, effective elastic constants, and pressure derivatives of
the second-order constants are also presented. A generalized method of
homogeneous deformation is developed to relate the computationally friendly
infinitesimal strain approach to the thermodynamically rigorous finite-strain
formalism. Computational protocols, involving up to nine distinct shape-
changing deformations, are developed to facilitate the determination of all
second- and third-order elastic and inner elastic constants, and hence of all
derived quantities.

1. Introduction

This and the preceding paper [1] (hereafter C1) are formal studies in which the elasticity
of the diamond and graphite allotropes of carbon are treated through the third order. They
have been written to pave the way for a number of individual studies in which the various
models that have been proposed from time to time will be evaluated, and possibly improved
upon. Such studies benefit from the investigation of as many related properties as possible
and motivate the detailed attention that is being paid to the microscopic aspects arising from
the relative motion of sublattices, characterized by inner elastic constants and internal strain
tensors. Apart from cubic diamond (cD), which though treated before [2] is included here
for completeness, there has not to my knowledge been any analysis of the composition of the
elastic constants of the more complex hexagonal allotropes (hD and hG) or of the simple but
low-symmetry rhombohedral graphite (rG), all of which possess a rich complement of inner
elastic constants [1].
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The rotationally invariant finite-strain approach is set out in section 2 following the general
principles laid out in [3] and [4]. The treatment of crystal equilibrium leads to expressions
for the total elastic constants in terms of partial and inner elastic constants, and internal strain
tensors—the anatomy in the title.

The complementary constants, the elastic compliances, are treated in section 3 together
with the linear and quadratic compressibilities. The effective elastic constants and their
pressure derivatives are presented in section 4.

Complex treatments of elasticity, via total-energy calculations for example, or models
in which many-body terms are introduced to represent bond order, are not easily handled
analytically and usually require the energy to be calculated for a sufficiently large set of
deformations and the results processed by numerical differentiation. Such computations
are most readily handled through the computationally friendly method of homogeneous
deformation and the resulting Fuchs constants [5] converted subsequently to Brugger
constants [6], their thermodynamically rigorous, finite-strain counterparts. This procedure,
which is particularly intricate for the inner elastic constants, is detailed extensively in section 5.
The section concludes with an exposition of computational procedures of sufficient scope to
enable all constants to be computed.

2. Elasticity

The expression for a contribution to the free energy per unit initial volume is written in
contracted notation as follows:

ρ0F(ζ λ, η) = ρ0F(0, 0) + C0
I ηI + Dλ

i ζ
λ
i + 1

2C0
IJ ηI ηJ + Dλ

iJ ζ λ
i ηJ + 1

2E
λµ

ij ζ λ
i ζ

µ

j

+ 1
6C0

IJKηIηJ ηK + 1
2Dλ

iJKζ λ
i ηJ ηK + 1

2E
λµ

ijKζ λ
i ζ

µ

j ηK + 1
6F

λµν

ijk ζ λ
i ζ

µ

j ζ ν
k , (1)

where Greek superscripts run from 1 to 3 in the cases of hD and hG. For rG and cD the
superscripts are all unity and may thus be omitted for clarity. The coefficients C0

I , C0
IJ , and

C0
IJK are contributions to the partial elastic constants which are themselves the contributions

to the total elastic constants CI , CIJ , and CIJK that are independent of inner displacement. A
full description of the structure and symmetry of the four allotropes is given in C1. Symmetry
analysis [7] reveals which elastic constants may be non-zero and what relations exist between
them. Some constants may be selected as independent and these constitute the set that must
be evaluated in order to get a full description of the elasticity. They are presented for cD and
rG in tables 1 and 2. Also shown in the latter are the elastic constants of cD transformed
to a rhombohedral system of axes, a form suitable for considering the cD-to-rG solid-state
transition. The elastic constants of the hexagonal allotropes are displayed in table 3.

The inner elastic constants were treated comprehensively in C1. TheDλ
iJ -elements express

the strength of the coupling between internal and external strain and the E
λµ

ij , closely related
to the lattice-dynamical coupling constants, determine the frequencies, and for the hexagonal
allotropes the eigenvectors, of the optic modes at the zone centre. The remaining third-order
constants, Dλ

iJK , E
λµ

ijK , and F
λµν

ijk , are involved in the strain dependence of various parameters
that would be constant in the harmonic approximation. The constants defined in this context
are generally called Brugger constants [6]. When all contributions α to the free energy have
been included in equation (1), equilibrium conditions require that the sums of the first-order
terms should be zero:

∑
α(C0

I )α ≡ 0 and
∑

α(Dλ
i )α ≡ 0. The final expressions for CI , CIJ ,

and CIJK as sums of partial and inner elastic constants are then obtained by eliminating ζ λ

from the free energy using

ζ λ
i = Aλ

iJ ηJ (2)
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Table 1. The symmetry of the elastic constants of cubic diamond. The left-hand column contains
the sets of components of each constant that have been selected as independent and the right-hand
column contains the relationships between the remaining non-zero components and the independent
ones. Equality of constants that differ only in the order of their subscripts is understood.

C1 C2 = C3 = C1

C11 C22 = C33 = C11

C12 C13 = C23 = C12

C44 C55 = C66 = C44

C111 C222 = C333 = C111

C112 C113 = C122 = C133 = C223 = C233 = C112

C123

C144 C255 = C366 = C144

C155 C166 = C244 = C266 = C344 = C355 = C155

C456

(there is no need for a term quadratic in η below the fourth order) and then Dλ
iJ using

Dλ
iJ + E

λµ

ij A
µ

jJ = 0. (3)

The final expressions for the total elastic constants are thus

CIJ = C0
IJ − Aλ

iIA
µ

jJ E
λµ

ij = C0
IJ − �IJ (4)

and

CIJK = C0
IJK + Aλ

iID
λ
iJK + Aλ

iJ Dλ
iIK + Aλ

iKDλ
iIJ + Aλ

iIA
µ

jJ E
λµ

ijK + Aλ
iIA

µ

jKE
λµ

ijJ

+ Aλ
iJ A

µ

jKE
λµ

ijI + Aλ
iIA

µ

jJ Aν
kKF

λµν

ijk = C0
IJK + �IJK. (5)

The expressions for the non-zero components �IJ and �IJK for the different allotropes are
obtained by taking appropriate sets of independent non-zero inner elastic constants and internal
strain tensor components from tables 4, 6, and 7 in C1. The considerable differences between
the two hexagonal allotropes are a direct consequence of the different site symmetries in the two
structures: the two distinct pairs of equivalent sites in hG each have 6̄m2 symmetry whereas
the four equivalent sites in hD have the lower 3m symmetry.

2.1. Cubic diamond

At the second order,

�44 = (A14)
2E11 (6)

and at the third,

�144 = 2A14D114 + (A14)
2E111

�155 = 2A14D124 + (A14)
2E112

�456 = 3A14D156 + 3(A14)
2E126 + (A14)

3F123.

(7)
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Table 2. The symmetry of the elastic constants of rhombohedral graphite. The left-hand column
contains the sets of components of each constant that have been selected as independent and
the centre column contains the relationships between the remaining non-zero components and the
independent ones. Equality of constants that differ only in the order of their subscripts is understood.
The right-hand column contains the elastic constants of diamond referred to rhombohedral axes in
terms of the cubic constants. Upper signs refer to the reverse setting, lower to the obverse.

Rhombohedral graphite Rhombohedral diamond

C1 C2 = C1 C1

C3 C1

C11 C22 = C11 (C11 + C12 + 2C44)/2

C12 C66 = (C11 − C12)/2 (C11 + 5C12 − 2C44)/6

C13 C23 = C13 (C11 + 2C12 − 2C44)/3

C33 (C11 + 2C12 + 4C44)/3

C44 C55 = C44 (C11 − C12 + C44)/3

C14 C24 − C56 = −C14 ±(C11 − C12 − 2C44)/3
√

2

C111 C112 = C111 − C166 − 3C266 (C111 + 3C112 + 12C155)/4

C113 C122 = C111 − 2C166 − 2C266 (C111 + 4C112 + C123 + 2C144 − 4C155)/6

C133 C222 = C111 + C166 − C266 (C111 + 6C112 + 2C123 − 8C456)/9

C333 C123 = C113 − 2C366 (C111 + 6C112 + 2C123 + 12C144 + 24C155 + 16C456)/9

C144 C223 = C113 (C111 + 3C112 − 4C123 + 9C144 − 3C155 − 2C456)/18

C244 C233 = C133 (C111 − C112 + C144 + C155 + 2C456)/6

C344 C155 = C244 (C111 − C123 − 3C144 + 6C155 − 2C456)/9

C166 C255 = C144 (C111 − C112 + 4C144 + 4C155 + 8C456)/12

C266 C355 = C344 (C111 + 3C112 − 4C123 − 12C144 + 36C155 − 8C456)/36

C366 C456 = (C244 − C144)/2 (C111 − C123 + 12C144 − 8C456)/18

C114 C224 = −(C114 + 2C124) ±(C111 + C112 − 2C123 − 4C144 − 4C155)/6
√

2

C124 C156 = (C114 + 3C124)/2 ±(C111 − 3C112 + 2C123 − 8C456)/18
√

2

C134 C256 = (C114 − C124)/2 ±(C111 − C123 − 6C155 + 4C456)/9
√

2

C444 C234 = −C356 = −C134 ∓(C111 − 3C112 + 2C123 + 3C144 − 3C155 − 2C456)/9
√

2

C446 = C124

C455 = −C444

2.2. Rhombohedral graphite

At the second order,

�11 = (A31)
2E33 + (A16)

2E11

�12 = (A31)
2E33 − (A16)

2E11

�13 = A31A33E33

�33 = (A33)
2E33

�44 = (A15)
2E11

�14 = A15A16E11.

(8)
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Table 3. The symmetry of the elastic constants of hexagonal diamond and hexagonal graphite.
The left-hand column contains the sets of components of each constant that have been selected as
independent and the right-hand column contains the relationships between the remaining non-zero
components and the independent ones. Equality of constants that differ only in the order of their
subscripts is understood.

C1 C2 = C1

C3

C11 C22 = C11

C12 C23 = C13

C13 C55 = C44

C33 C66 = 1
2 (C11 − C12)

C44

C111 C112 = C111 − C166 − 3C266

C113 C122 = C111 − 2C166 − 2C266

C133 C222 = C111 + C166 − C266

C333 C123 = C113 − 2C366

C144 C223 = C113

C244 C233 = C133

C344 C155 = C244

C166 C255 = C144

C266 C355 = C344

C366 C456 = 1
2 (C244 − C144)

At the third order,

�111 = 3A16D211 + 3A31D311 + 3(A16)
2E112 + 6A16A31E136 + 3(A31)

2E331

− (A16)
3F112 + 3(A16)

2A15F113 + (A31)
3F333

�113 = 2A16D136 + A33D311 + 2A31D313 + (A16)
2E113 + 2A16A33E136 + 2A31A33E331

+ (A31)
2E333 + (A16)

2A33F113 + (A31)
2A33F333

�133 = 2A33D313 + A31D333 + (A33)
2E331 + 2A31A33E333 + A31(A33)

2F333

�333 = 3A33D333 + 3(A33)
2E333 + (A33)

3F333

�144 = −A16D145 + 2A15D125 + A31D344

+ 2A31A15E315 + (A15)
2E112 − A16(A15)

2F112 + A31(A15)
2F113

�244 = A16D145 + 2A15D115 + A31D344 + 2A31A15E315 + (A15)
2E111

+ A16(A15)
2F112 + A31(A15)

2F113

�344 = 2A15D135 + A33D344 + 2A33A15E315 + (A15)
2E113 + A33(A15)

2F113 (9)

�166 = −A16(D211 + 2D222) + 1
2A31(D311 − D312) + (A16)

2(2E111 − E112)

+ 2A31A16E136 + (A16)
3F112 + A31(A16)

2F113

�266 = A16(2D211 + D222) + 1
2A31(D311 − D312) − (A16)

2(E111 − 2E112)

+ 2A31A16E136 − (A16)
3F112 + A31(A16)

2F113

�366 = 2A16D136 + 1
2A33(D311 − D312) + (A16)

2E113 + 2A33A16E136 + A33(A16)
2F113

�114 = 2A16D125 + A15D211 + 2A16A15E112 + 2A31A15E136

− (A16)
2A15F112 + 2A16A15A31F113

�124 = −A16D125 + A15D212 + A31D314 + A16A15(E111 − E112) + (A16)
2A15F112

�134 = A16D135 + A15D136 + A33D314 +A16A15(E113 + E135) + A33A15E136+A16A15A33F113

�444 = −3A15D145 − (A15)
3F112.
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2.3. Hexagonal diamond

In C1 it was useful to define some composite constants in order to simplify expressions for the
pressure derivatives of the optic mode frequencies. A similar need arises here. The composite
constants are

Eaa
ij. ≡ E11

ij. − E12
ij. + E13

ij.

Ebb
ij. ≡ E11

ij. − E13
ij.

F 11a
112 ≡ F 111

112 − 3F 112
112 + 3F 113

112

F 1bb
113 ≡ F 111

113 − F 113
113 − 2F 121

113 + 2F 123
113 + 2F 131

113 + F 221
113

F 1cc
113 ≡ F 111

113 − 2F 131
113 − F 113

113 .

At the second order,

�11 = 2(A1
31)

2Ebb
33 + 2(A1

16)
2Eaa

11

�12 = 2(A1
31)

2Ebb
33 − 2(A1

16)
2Eaa

11

�13 = 2A1
31A

1
33E

bb
33

�33 = 2(A1
33)

2Ebb
33

�44 = 2(A1
15)

2Ebb
11 .

(10)

At the third order,

�111 = 6A1
16D

1
211 + 6A1

31D
1
311 + 6(A1

16)
2Eaa

112 + 12A16A31E
bb
136 + 6(A1

31)
2Ebb

331

− 2(A1
16)

3F 11a
112 + 6(A1

16)
2A1

31F
1bb
113 + 2(A1

31)
3(F 111

333 − 3F 113
333 )

�113 = 4A1
16D

1
136 + 2A1

33D
1
311 + 4A1

31D
1
313 + 2(A1

16)
2Eaa

113 + 4A16A33E
bb
136 + 4A1

31A
1
33E

bb
331

+ 2(A1
31)

2Ebb
333 + 2(A1

16)
2A1

33F
1bb
113 + 2(A1

31)
2A1

33(F
111
333 − 3F 113

333 )

�133 = 4A1
33D

1
313 + 2A1

31D
1
333 + 2(A1

33)
2Ebb

331 + 4A1
31A

1
33E

bb
333 + 2A1

31(A
1
33)

2(F 111
333 − 3F 113

333 )

�333 = 6A1
33D

1
333 + 6(A1

33)
2Ebb

333 + 2(A1
33)

3(F 111
333 − 3F 113

333 )

�144 = −2A1
16D

1
145 + 4A1

15D
1
125 + 2A1

31D
1
344 + 4A1

31A
1
15E

bb
315 + 2(A1

15)
2Ebb

112

− 2A1
16(A

1
15)

2(F 111
112 − F 113

112 ) + 2A1
31(A

1
15)

2F 1cc
113 (11)

�244 = 2A1
16D

1
145 + 4A1

15D
1
115 + 2A1

31D
1
344 + 4A1

31A
1
15E

bb
315 + 2(A1

15)
2Ebb

111

+ 2A1
16(A

1
15)

2(F 111
112 − F 113

112 ) + 2A1
31(A

1
15)

2F 1cc
113

�344 = 4A1
15D

1
135 + 2A1

33D
1
344 + 4A1

33A
1
15E

bb
315 + 2(A1

15)
2Ebb

113 + 2A1
33(A

1
15)

2F 1cc
113

�166 = −2A1
16(D

1
211 + 2D1

222) + A1
31(D

1
311 − D1

312) + 2(A1
16)

2(2Eaa
111 − Eaa

112) + 4A1
31A

1
16E

bb
136

+ 2(A1
16)

3F 11a
112 + 2A1

31(A
1
16)

2F 1bb
113

�266 = 2A1
16(2D1

211 + D1
222) + A1

31(D
1
311 − D1

312) − 2(A1
16)

2(Eaa
111 − 2Eaa

112) + 4A1
31A

1
16E

bb
136

− 2(A1
16)

3F 11a
112 + 2A1

31(A
1
16)

2F 1bb
113

�366 = 4A1
16D

1
136 + A1

33(D
1
311 − D1

312) + 2(A1
16)

2Eaa
113 + 4A1

33A
1
16E

bb
136 + 2A1

33(A
1
16)

2F 1bb
113 .



The elasticity of carbon allotropes: II 5121

2.4. Hexagonal graphite

The following composite constants are useful:

E1c
11. ≡ E11

11. − 1
2E12

11.

E3c
11 ≡ E33

11. − 1
2E12

11.

F 1cc
112 ≡ 1

4F 112
112 − F 123

112 + F 133
112 .

At the second order, after using E22
11 = 2E12

11 = 2E23
11 and A2

16 = − 1
2 (A1

16 + A3
16) (see C1), we

obtain
�11 = (A1

16)
2E1c

11 + (A3
16)

2E3c
11 + 2A1

16A
3
16(E

13
11 − 1

2E12
11)

�12 = −�11.
(12)

At the third order,

�111 = 3A1
16D

1
211 + 3A3

16D
3
211 + 3(A1

16)
2E1c

112 + 3(A3
16)

2E3c
112 + 6A1

16A
3
16(E

13
112 − 1

2E12
112)

− (A1
16)

3(F 111
112 − 3

4F 112
112 ) − 3

4 (A1
16)

2A3
16F

223
112

− 3A1
16(A

3
16)

2F 1cc
112 − (A3

16)
3(F 333

112 − 3
4F 223

112 )

�113 = 2A1
16D

1
136 + 2A3

16D
3
136 + (A1

16)
2E1c

113 + (A3
16)

2E3c
113 + 2A1

16A
3
16(E

13
113 − 1

2E12
113)

�144 = −A1
16D

1
145 − A3

16D
3
145

�244 = −�144

�166 = −A1
16(D

1
211 + 2D1

222) − A3
16(D

3
211 + 2D3

222) + (A1
16)

2(2E1c
111 − E1c

112)

+ (A3
16)

2(2E3c
111 − E3c

112) + 2A1
16A

3
16(2E13

111 − E13
112 − E12

111 + 1
2E12

112)

+ (A1
16)

3(F 111
112 − 3

4F 112
112 ) + (A3

16)
3(F 333

112 − 3
4F 223

112 )

+ 3
4 (A1

16)
2A3

16F
223
112 + 3A1

16(A
3
16)

2F 1cc
112

�266 = A1
16(2D1

211 + D1
222) + A3

16(2D3
211 + D3

222) + (A1
16)

2(2E1c
112 − E1c

111)

+ (A3
16)

2(2E3c
112 − E3c

111) + 2A1
16A

3
16(2E13

112 − E13
111 − E12

112 + 1
2E12

111)

− (A1
16)

3(F 111
112 − 3

4F 112
112 ) − (A3

16)
3(F 333

112 − 3
4F 223

112 )

− 3
4 (A1

16)
2A3

16F
223
112 − 3A1

16(A
3
16)

2F 1cc
112

�366 = �113.

(13)

3. Compliances and compressibilities

Measurements of lattice parameter and volume change under pressure by means of x-ray or
neutron diffraction may be used to extract elasticity information from crystals too small to
subject to more conventional techniques, such as ultrasonics. The primary quantities obtained
are compressibilities.

The compatibility of Hooke’s law extended to terms quadratic in the strain

σI = CIJ ηJ + 1
2CIJKηJ ηK (14)

with its inverse form

ηI = SIJ σJ + 1
2SIJKσJ σK (15)

defines implicitly both second- and third-order elastic compliances. The second-order ones
are given by standard matrix inversion whilst the third-order ones are given by [8, 9]

SIJK = −SIP SJQSKRCPQR. (16)
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Under hydrostatic pressure σJ = −pδJ , where δJ = 1 if J = 1, 2, or 3 and zero otherwise,
whence

ηI = −pSIJ δJ + 1
2p2SIJKδJ δK = −kIp + 1

2KIp
2 (17)

implicitly defining harmonic and anharmonic linear compressibilities.

3.1. Cubic diamond

When η1 = η2 = η3 we have (dropping subscripts)

k = S11 + 2S12 (18)

and

K = S111 + 6S112 + 2S123. (19)

On setting 2η1 = 2η2 = 2η3 = �a2/a2
0 we obtain

�a/a0 = −kp + 1
2 (K − k2)p2 (20)

for lattice parameter change.
The exact expression for the volume V of a finitely strained crystal is(

V/V0
)2 = det(I + 2η) (21)

and leads to volume change given by

�V /V0 = −3kp + 3
2 (K + k2)p2. (22)

3.2. Hexagonal diamond, hexagonal graphite and rhombohedral graphite

For the axial allotropes, in which 2η1 = 2η2 = �a2/a2
0 and 2η3 = �c2/c2

0, there are two
compressibilities of each kind:

ka = S11 + S12 + S13

kc = 2S13 + S33

Ka = S111 + 2S112 + 2S113 + S122 + 2S123 + S133

Kc = 2S113 + 2S123 + 4S133 + S333.

(23)

The lattice parameters change as

�a/a0 = −kap + 1
2 (Ka − k2

a)p
2

�c/c0 = −kcp + 1
2 (Kc − k2

c )p
2

(24)

and the volume as

�V /V0 = −kvp +
1

2
(Kv + 4kakc − k2

c )p
2 (25)

where kv = 2ka + kc and Kv = 2Ka + Kc.

4. Effective elastic constants and their pressure derivatives

Ultrasonic velocity measurements made on an initially stressed crystal yield effective elastic
constants. When such a crystal is further deformed its energy can be expressed either in terms
of the additional deformation and the effective elastic constants or in terms of the overall
deformation and the elastic constants of the crystal in the unstrained state. The procedure
is described fully for arbitrary strain in [10, section 8]. The expressions so obtained are
differentiated to give the pressure derivatives of the second-order constants.
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4.1. Cubic diamond

The effective constants are

C̄11 = C11(1 + 3η1 − η2 − η3) + C111η1 + C112(η2 + η3)

C̄12 = C12(1 + η1 + η2 − η3) + C112(η1 + η2) + C123η3

C̄44 = C44(1 − η1 + η2 + η3) + C144η1 + C155(η2 + η3).

(26)

Differentiation of the above, after setting η1 = η2 = η3 = −kp, gives the following pressure
derivatives:

−C ′
11 = k(C11 + C111 + 2C112)

−C ′
12 = k(C12 + 2C112 + C123)

−C ′
44 = k(C44 + C144 + 2C155).

(27)

4.2. Hexagonal diamond and hexagonal graphite

For both allotropes, the effective constants are

C̄11 = C11(1 + 3η1 − η2 − η3) + C111η1 + C112η2 + C113η3

C̄12 = C12(1 + η1 + η2 − η3) + C112η1 + C122η2 + C123η3

C̄13 = C13(1 + η1 − η2 + η3) + C113η1 + C123η2 + C133η3

C̄33 = C33(1 − η1 − η2 + 3η3) + C133(η1 + η2) + C333η3

C̄44 = C44(1 − η1 + η2 + η3) + C144η1 + C244η2 + C344η3.

(28)

Differentiation, after setting η1 = η2 = −kap and η3 = −kcp, then gives the following
pressure derivatives:

−C ′
11 = ka(2C11 + C111 + C112) + kc(−C11 + C113)

−C ′
12 = ka(2C12 + C112 + C122) + kc(−C12 + C123)

−C ′
13 = ka(C113 + C123) + kc(C13 + C133)

−C ′
33 = 2ka(−C33 + C133) + kc(3C33 + C333)

−C ′
44 = ka(C144 + C244) + kc(C44 + C344).

(29)

It was not possible, using the above procedure, to reproduce the expressions for the effective
elastic constants of hexagonal crystals under isotropic pressure given in [11].

4.3. Rhombohedral graphite

The effective constants are

C̄11 = C11(1 + 3η1 − η2 − η3) + C111η1 + C112η2 + C113η3 + C114η4

C̄12 = C12(1 + η1 + η2 − η3) + C14η4 + C112η1 + C122η2 + C123η3 + C124η4

C̄13 = C13(1 + η1 − η2 + η3) + C14η4 + C113η1 + C123η2 + C133η3 + C134η4

C̄33 = C33(1 − η1 − η2 + 3η3) + C133(η1 + η2) + C333η3 + C334η4

C̄44 = C44(1 − η1 + η2 + η3) − C14η4 + C144η1 + C244η2 + C344η3 + C444η4

C̄14 = C14(1 + η1) + 1
2 (C12 + C13)η4 + C114η1 + C124η2 + C134η3 + C144η4.

(30)

As η4 = 0 under hydrostatic pressure, their pressure derivatives are simply the same as those
of hD and hG augmented by

−C ′
14 = ka(C14 + C114 + C124) + kcC134. (31)
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5. Generalized homogeneous deformation

The elastic constants of finite-strain theory can only be computed directly when the
contributions to the energy of the system are simple analytical functions of the interatomic
separations or of the unit-cell volume. The favoured alternative is to use infinitesimal strain
theory with suitably tailored homogeneous deformations. In the traditional approach two such
ad hoc deformations were sufficient to determine the two second-order elastic shear constants
of FCC metals, such as copper [5] and aluminium [12], in which there is no inner elasticity. In
the latter work the deformation was not defined in terms of a parameter that tended to zero in the
unstrained state and in neither case was the volume conserved to better than first order. If the
method is to be applied to higher-order elastic constants and to hexagonal and rhombohedral
material, where there are at least five second-order, ten third-order, and numerous inner elastic
constants, a rigorous formal procedure is necessary.

Homogeneous deformations are represented by deformation gradient matrices and may
operate on the crystal structure with or without sublattice displacements. They may be defined
in a generalized way in terms of a uniform volume-changing part and a shape-changing part.
The latter is represented by

J (x) = S(x)[I + xP ] (32)

where P is a 3×3 matrix of small integers or zeros that determines a particular deformation of
shape, I is the unit 3×3 matrix, and x is a measure of the strain. S(x) is a scaling function used
to ensure that the determinant of J (x) is unity, so that the volume of the crystal is undisturbed
by the shape-changing part. It is given in terms of the trace and determinant of P (tp and dp)
and the trace of the matrix of the cofactors of the elements of P(cp) by

[S(x)]−3 = 1 + tpx + cpx2 + dpx3. (33)

The uniform volume-changing part is a factor (1 + v)1/3, where v is the relative change of
volume of the unit cell under strain, giving

H(x, v) = (1 + v)1/3J (x) (34)

for the net deformation gradient matrix.
The displacement of sublattice α is defined by a small vector �uα such that the position

vector �rα
0 of a particular atom on the sublattice in the unstrained crystal becomes �rα after strain

where

�rα = H(x, v)�rα
0 + �uα. (35)

An individual contribution to the free energy per unit initial volume in this approach may
be written as

ρ0F(uα, v, x) = ρ0F(0, 0, 0) + c0
vv + c0

xx + dα
i uα

i + 1
2c0

vvv
2 + c0

vxvx + 1
2c0

xxx
2

+ dα
ivu

α
i v + dα

ixu
α
i x + 1

2e
αβ

ij uα
i u

β

j + 1
6c0

vvvv
3 + 1

2c0
vvxv

2x

+ 1
2c0

vxxvx2 + 1
6c0

xxxx
3 + 1

2dα
ivvu

α
i v2 + dα

ivxu
α
i vx

+ 1
2dα

ixxu
α
i x2 + 1

2e
αβ

ijvu
α
i u

β

j v + 1
2e

αβ

ijxu
α
i u

β

j x + 1
6f

αβγ

ijk uα
i u

β

j u
γ

k , (36)

for a specific choice of P . Summation over repeated subscripts i, j , and k and over the
superscripts α, β, and γ is implied: the former run from 1 to 3 and the latter from 1 to 2
(cD and rG) or 1 to 4 (hD and hG). The coefficients labelled with vs and/or xs are linear
combinations; e.g., dα

ivx is a combination of several of the dα
iJK . Lower-case symbols c, d, e,

and f have been used for the different tensors to indicate their kinship with the upper-case
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versions used in the finite-strain approach. Coefficients defined in the above way are called
Fuchs constants following their introduction in [5].

The Lagrangian strain is given by

2η(x, v) + I = H̃ (x, v)H(x, v) (37)

where the tilde denotes matrix transposition. The rotationally invariant measures of inner
displacement �ζ λ are defined from the relative displacements of atoms on two sublattices by

�ζ λ(x, v) = H̃ (x, v)(�uλ+1 − �uλ) (38)

or

�ζ λ(x, v) = H̃ (x, v)�λα �uα (39)

where

� =




−1 1 · · · · · ·
· −1 1 · · · · ·
...

...
...

. . .
...

...

· · · · · · 1 ·
· · · · · · −1 1


 .

No generality is lost if P is taken to be symmetric and thus finally we have

2η(x, v) + I = (1 + v)2/3[S(x)]2[I + 2xP + x2P 2] (40)

and

�ζ λ(x, v) = (1 + v)1/3S(x)(I + xP )�λα �uα. (41)

The constants calculated directly from equation (36) are related to those appearing in
equation (1) through chain rule differentiation with the operators

∂

∂x
=

(
∂ηI

∂x

)
∂

∂ηI

∂

∂v
=

(
∂ηI

∂v

)
∂

∂ηI

∂

∂uα
i

=
(

∂ζ λ
j

∂uα
i

)
∂

∂ζ λ
j

= Hij (x, v)�̃αλ ∂

∂ζ λ
j

.

(42)

Coefficients are evaluated at zero strain when differentiation is complete.
The completely general relationships between Fuchs and Brugger constants are given

by the expressions below in which summation over repeated subscripts is assumed. The
convention δI = 1 when I = 1, 2, or 3 and is zero otherwise is used. The coefficients ti are
related to those in equation (33) by t1 = −tp, t2 = 5t2

p−6cp, and t3 = −(20t3
p−45tpcp +27dp).

P and Q each appear in two guises: as 3 × 3 matrices with elements Pij , Qij , and as
6 × 1 matrices with elements PI , QI . The latter relate to the former in the same way as
ηI relates to ηij .

Under volume strain alone:

3c0
v = δIC

0
I

9c0
vv = −δIC

0
I + δI δJ C0

IJ

27c0
vvv = 4δIC

0
I − 3δI δJ C0

IJ + δI δJ δKC0
IJK.

(43)
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Under shape strain alone:

3c0
x = (t1δI + 3PI )C

0
I

9c0
xx = (t2δI + 12t1PI + 9QI)C

0
I + (t2

1 δI δJ + 3t1(δIPJ + δJ PI ) + 9PIPJ )C0
IJ

54c0
xxx = 4(t3δI + 9t2PI + 27t1QI)C

0
I + 3(2t1t2δI δJ + 3(t2 + 4t2

1 )(δIPJ + δJ PI )

+ 72t1PIPJ + 9t1(δIQJ + δJ QI ) + 27(PIQJ + PJ QI ))C
0
IJ + 2(t3

1 δI δJ δK

+ 3t2
1 (δI δJ PK + δI δKPJ + δJ δKPI ) + 9t1(δIPJ PK + δJ PIPK + δKPIPJ )

+ 27PIPJ PK)C0
IJK.

(44)

Under volume and shape strain together:

18c0
vx = 4(t1δI + 3PI )C

0
I + (2t1δI δJ + 3(δIPJ + δJ PI ))C

0
IJ

54c0
vvx = −4(t1δI + 3PI )C

0
I + 3(2t1δI δJ + 3(δIPJ + δJ PI ))C

0
IJ

+ 2(t1δI δJ δK + (δI δJ PK + δI δKPJ + δJ δKPI ))C
0
IJK

54c0
vxx = 4(t2δI + 12t1PI + 9QI)C

0
I + (2(t2 + 4t2

1 )δI δJ + 36t1(δIPJ + δJ PI )

+ 72PIPJ + 9(δIQJ + δJ QI ))C
0
IJ + 2(t2

1 δI δJ δK

+ 2t1(δI δJ PK + δI δKPJ + δJ δKPI )

+ 3(δIPJ PK + δJ PIPK + δKPIPJ ))C0
IJK.

(45)

Under sublattice displacement(s) alone:

dα
p = �̃αλDλ

p

eαβ
pq = �̃αλ�̃βµEλµ

pq

f αβγ
pqr = �̃αλ�̃βµ�̃γ νF λµν

pqr .

(46)

Under volume strain and sublattice displacement(s) together:

3dα
pv = �̃αλ(Dλ

p + δJ Dλ
pJ )

9dα
pvv = �̃αλ(−2Dλ

p + δJ Dλ
pJ + δJ δKDλ

pJK)

3eαβ
pqv = �̃αλ�̃βµ(2Eλµ

pq + δKE
λµ

pqK).

(47)

Under shape strain and sublattice displacement(s) together:

3dα
px = �̃αλ(t1D

λ
p + 3PipDλ

i + (t1δJ + 3PJ )Dλ
pJ )

9dα
pxx = �̃αλ((t2 − t2

1 )Dλ
p + 6t1PipDλ

i + ((t2 + 2t2
1 )δJ + 18t1PJ + 9QJ )Dλ

pJ

+ 6Pip(t1δJ + 3PJ )Dλ
iJ + (t2

1 δJ δK + 3t1(δJ PK + δKPJ ) + 9PJ PK)Dλ
pJK)

3eαβ
pqx = �̃αλ�̃βµ((2t1E

λµ
pq + 3PjqE

λµ

pj + 3PipE
λµ

iq ) + (t1δK + 3PK)E
λµ

pqK).

(48)

Under volume and shape strain, together with sublattice displacement:

18dα
pvx = �̃αλ(2t1D

λ
p + 6PipDλ

i + 2(4t1δJ + 9PJ )Dλ
pJ + 6δJ PipDλ

iJ

+ (2t1δJ δK + 3(δJ PK + δKPJ ))Dλ
pJK). (49)

5.1. Computational procedures

A sufficient variety of deformations must be selected to ensure that all the independent elastic
and inner elastic constants can be uniquely determined. Several dozen distinct ones are used.
These involve
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Table 4. Specification of the shape-changing matrices P and the corresponding scaling functions.
Pij = Pji in each case.

Number P11 P22 P33 P12 P13 P23 S(x)−3

Cubic diamond
1 1 0 0 0 0 0 1 + x

2 0 0 0 1 1 1 1 − 3x2 + 2x3

3 0 1 −1 1 1 0 1 − 3x2 − x3

Hexagonal graphite (1–5), hexagonal diamond (1–7), rhombohedral graphite (1–9)

1 0 0 3 0 0 0 1 + 3x

2 0 0 3 0 0 1 1 + 3x − x2

3 0 0 3 1 0 0 1 + 3x − x2 − 3x3

4 1 −1 0 0 0 0 1 − x2

5 0 0 0 1 1 1 1 − 3x2 + 2x3

6 0 0 3 0 0 −1 1 + 3x − x2

7 0 0 0 −1 1 1 1 − 3x2 + 2x3

8 1 1 0 1 1 0 1 + 2x − x2 − x3

9 1 1 0 −1 1 0 1 + 2x − x2 − x3

(i) uniform volume change on its own,

(ii) a set of different shape-changing matrices P , detailed for the four carbon allotropes under
discussion in table 4, each to be used both with and without volume change,

(iii) one of the components of sublattice displacement uα
i , or one of the pairs uα

i , u
β

j , or one of

the triplets uα
i , u

β

j , u
γ

k , either alone or combined with the previous items.

Each deformation is used with a grid of seven equally spaced values of x, v, and/or each uα
i

as appropriate. The energy is determined at each point in the grid and partial energy derivatives
are calculated by numerical differentiation, using least-squares fitting of a polynomial (a cubic
is completely satisfactory) to seven equally spaced points.

5.2. Formal checks

There are numerous opportunities for errors to arise in a complex calculation. To test the
accuracy of the calculations that have been made on the individual allotropes (papers in
preparation), the extravagance of calculating all possible components of the d-, e-, and f -
tensors was indulged. This showed explicitly that all expected crystal symmetry relations were
satisfied. In this test there may be more than a million applications of the energy algorithm and
several hundred applications of the least-squares fitting subroutine. Where components should
have been zero, small values arising from statistical noise were found, though in all cases these
were a million or more times smaller than the smallest non-zero components of the same tensor.

The accuracy of the subsequent conversion of the Fuchs constants to Brugger constants
was tested in two ways. In the first the energy algorithm was replaced by the summation of
a simple pair potential φ(r) = 1/r6 over a cluster of more than 8000 atoms. The results of
this were compared with the direct calculation of Brugger constants for this potential using
the modified Ewald method described in [5]. In the second test the energy algorithm was
replaced by equation (1) with the previously computed values of all the elastic constants.
Self-consistency was total.
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6. Summary

Building on the foundation of the preceding paper the composition of the second- and third-
order elastic constants of four carbon allotropes in terms of their inner elastic constants and
internal strain tensors has been presented. Certain properties derived from these constants, such
as compliances, compressibilities, and pressure derivatives, are closely related to parameters
that can be obtained directly by x-ray or neutron diffraction or from ultrasonic velocity
measurements. These have also been exposed explicitly.

The generalized method of homogeneous deformation provides a coherent way of calcu-
lating every partial and inner elastic constant belonging to a specified crystal structure. The
route that proceeds from infinitesimal strains to elastic energies, to Fuchs constants, to Brugger
constants is the only viable one when the interaction potentials involved are more complex than
inverse powers of interatomic separation. It is particularly suitable for total-energy methods.
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